Для тех из нас, кому не чужды забота об окружающей среде и желание сэкономить, предлагаю погрузиться в тему солнечных водонагревателей.

Технология существует и применяется уже много лет, особенно часто можно встретить такие коллекторы на домах в Европе и других солнечных странах мира.

Россия пока сильно отстает по темпам внедрения панелей, что и не удивительно — стоимость оборудования и установки высока, а сроки окупаемости, в условиях нашего климата, достигают десятки лет.

Эта статья будет первой в цикле. Сначала разберемся — что такое солнечные коллекторы и как они работают. Оказывается, существует несколько разновидностей таких устройств с разной степенью эффективности и областью применения.

Влияние на экологию тоже не столь однозначное, как кажется на первый взгляд. Даже если не брать в расчет отходы при производстве коллекторов, существуют и другие, менее очевидные факторы.

Чем отличаются солнечные батареи от коллекторов?

Ежедневно на землю падает огромное количество солнечного излучения большая часть которого не используется. Задача коллектора — «впитать» в себя определенную долю этого излучения и преобразовать его в пригодную для человеческих потребностей энергию.

При этом важно отличать: солнечное излучение может быть преобразовано в 2 вида энергии – тепловую и электрическую.

  • Солнечные коллекторы применяются для получения тепла и нагрева воды. Они нагревают воду которая используется для ГВС и отопления здания.
  • Солнечные батареи (они же фотоэлектрические модули) применяются для выработки электроэнергии. Они имеют совершенно другой принцип действия.Виды солнечных коллекторов

Существует также комбинированная технология. Панели, которые одновременно вырабатывают электрическую и тепловую энергию.

Источники: term.od.ua

Устройство и принцип действия

Солнечный водонагреватель (вакуумный солнечный коллектор СВК) – это преобразователь тепловой энергии солнца. Солнечный водонагреватель обеспечивает сбор солнечного излучения в любую погоду, вне зависимости от внешней температуры.

Коэффициент поглощения энергии солнечным водонагревателем составляет 97%. Солнечные водонагреватели устанавливают на крыше зданий с ориентацией на юг. Угол наклона относительно горизонта должен быть равен градусу широты местности. Для Северо-Запада России это значение равно 60°. При эксплуатации системы в зимний период рекомендуется угол наклона увеличить до 70°.

Через верхнюю часть коллектора и змеевик протекает незамерзающая жидкость. Эта жидкость забирает тепло из медных наконечников, а при перекачке отдает через змеевик (теплообменник) бака-аккумулятора (бойлера) и таким образом нагревает воду в баке.

Цикл передачи тепла из коллектора к баку-аккумулятору длится до тех пор, пока длится световой день и температура на выходе коллектора выше температуры воды в баке. Приемник солнечного коллектора выполнен из меди с полиуретановой изоляцией, закрыт листом анодированного алюминия.

Передача тепла происходит через медную «гильзу» приемника. Благодаря этому «солнечный» контур отделен от трубок, поэтому при повреждении одной или нескольких трубки коллектор продолжает работать. Процедура замены трубок очень проста и нет необходимости сливать незамерзающую смесь из контура теплообменника.

Включение и выключение насоса производит контроллер на основании показаний датчиков температуры. Датчики температуры находятся на выходе водонагревателя (коллектора), в баке-накопителе (бойлере) и «обратке» системы отопления. Кроме того, расширительный бак предохраняет систему от избыточного давления, возникающего при чрезмерном разогреве теплоносителя.

Таким образом, раздельная система с принудительной циркуляцией представляет собой автоматизированную систему преобразования и сохранения тепла, полученного от энергии солнца, а также и от других источников энергии (например, традиционный водонагреватель, работающий на электричестве, газе или дизтопливе), которые страхуют систему при недостаточном количестве солнечной энергии. Нагретая вода используется для горячего водоснабжения и отопления.

Блок управления предназначен для контроля температуры в водонагревателе (солнечном коллекторе) и резервуаре-теплообменнике, а также для выбора, в зависимости от величины этих температур, оптимального режима работы системы в течение суток. При этом контроллер регулирует поток теплоносителя через теплообменник, определяет направление подачи тепла (на систему горячего водоснабжения или на отопление).

В ночное время автоматика системы обеспечивает минимально необходимое привлечение дополнительной энергии для поддержания заданной температуры внутри помещения.

Система обладает малой инерционностью, быстрым выходом на рабочий режим и позволяет обеспечить:

  1. Круглогодично — горячее водоснабжение;
  2. Сезонное отопление с экономией традиционных источников тепловой энергии до 70% (в зависимости от географической широты и климатических условий).

Источники: solarwindsystem.org

Стоит отметить что существует несколько типов коллекторов работающих от солнечного света. Основными типами являются плоский тип устройства и вакуумная модификация.

В плоском устройстве вода нагревается за счет падающих солнечных лучей проодящих через специальное стекло, с нанесенным на него спецраствором черного цвета для сохранения тепла.

Такая плоская панель делается воздухонепроницаемой, и имеет способность нагревать воду до температуры 200 градусов по Цельсию.

Вакуумный тип коллекторов имеет важное конструктивное отличие от плоских моделей устройства. Он имеет вид нескольких стеклянных трубок закрепленных на базовой панели. Эти стеклянные трубки имееют на внутренней поверхности стекла специальное покрытие собирающее солнечное тепло.

Кроме того внутри такой трубки располагается еще одна трубка меньшего сечения, причем между внешней и внутренней трубками имеется полость из которой откачан воздух. Эта вакуумная прослойка нужна для большей сохранности тепла, и способна повысить эффективность коллектора на 30 процентов, по сравнению с плоскими модификациями. С помощью такого коллектора вода способна нагреться до 300 градусов по Цельсию.

Еще одним технологическим отличием вакуумного типа солнечного коллектора является наличие специальной жидкости внизу трубки, которая вледствие нагрева превращается в пар, и, поднимаясь вверх, равномерно нагревает воду.

В регионах с малой продолжительностью светового дня и в условиях минусовой температуры такая схема работы дает значительный выигрыш в количестве тепловой энергии. Что касается цены, то, конечно, более конструктивно сложный вакуумный коллектор имеет более высокую цену, но при этом его характеристики имеют преимущества.

Источники: promplace.ru

Виды

Пассивные

Пассивные солнечные водонагреватели имеют совмещенный аккумулирующий накопительный бак и коллекторные элементы. Накопительные баки утеплены для исключения потери тепла. Объем накопительного бака берется из расчета двухдневного потребления горячей воды.

Пассивные системы перемещают готовую воду или теплоноситель через систему без насосов. Пассивные системы имеют преимущество, в том, что отключение электричества или поломка циркуляционного насоса не будет проблемой. Это делает пассивные системы вообще более надежными, более легкими в обслуживании, и возможно более долговечными, чем активные системы.

Главными преимуществами данной системы являются:

  • Низкая цена,
  • Простота установки и обслуживания. (Для ее работы достаточно только, чтобы в баке была вода. Подача воды может поступать самотеком из открытого бака, находящегося выше самого водонагревателя).
  • Для работы данного типа установки НЕ требуется электроэнергия. Электроэнергия может быть нужна только в случае установки в бак дополнительного электронагревателя (ТЭНа).

Пассивные системы имеют преимущество, в том, что отключение электричества или поломка циркуляционного насоса не будет проблемой. Это делает пассивные системы вообще более надежными, более легкими в обслуживании, и возможно более долговечными, чем активные системы.

Эти нагревательные системы исключительно подходят в средней зоне для дачного использования в период с марта по октябрь.

Технические особенности

Для получения максимальной получаемой энергии от солнца, коллекторы направляют «лицом» на юг или с отклонением до 30 °С от южного направления и наклоном между горизонтом и коллектором 30-55 ° в зависимости от широты.

Устанавливать солнечные водонагреватели можно на крыше, используя уже ее наклон, на балконе и на земле. В комплекте с солнечным водонагревателем входит стойка для установки на горизонтальную поверхность.

Применение:

Пассивные солнечные водонагреватели в основном используются для:

  1. принятия душа
  2. бытовые расходы воды (мытье посуды)
  3. обогрев парников
  4. подогрев воды в бассейнах и т. д.

Схема подключения воды может быть производиться из общей водяной системы с использованием водяного клапана понижающего давление практически до «0» или с подачей воды из дополнительного резервуара. (см. схему), находящегося выше не менее 30 см. от входа в бак накопитель.

Выбор модели солнечного водонагревателя напрямую связан от ежедневного расхода горячей воды. Модели пассивного солнечного нагревателя отличаются объемом накопительного бака от 80 до 200 л и площадью коллектора (количество вакуумных трубок от 15 до 24 шт). При необходимости использовать вариант более 200 литров, можно соединить солнечные нагреватели последовательно для набора нужного объема запаса горячей воды.

Активные

Основное отличие активных солнечных водонагревателей от пассивных водонагревателей — это применение всей системы при магистральном давлении воды до 1 МПа. (10 атм.).

Это преимущество активных солнечных водонагревателей перед пассивными водонагревателями дает возможность применение их во всех областях, где необходима горячая вода.

Активная солнечная система как правило включает в себя коллектор, насос, систему контроля, жидкий теплоноситель (антифриз) и расширительный бак. Активные СВ как правило используются в разделенном виде, т. е. коллектор находиться на крыше дома, а накопительная емкость и система управления внутри помещения.

Элемент, преобразующий энергию Солнца, представляет собой стеклянную, вакуумную колбу, которая имеет высокую степень противоградовой прочности (примерно как лобовое стекло автомобиля), за счет специальной закалки боросиликатного стекла при температуре 460 градусов. Внутрь каждой стеклянной колбы, в вакуум, помещена двойная (трубка в трубке) медная тепловая трубка с боковыми радиаторами.

Система замкнута в объеме стеклянной колбы, длиной до 2 метров и шириной 10 см. По внутренней медной трубке, охлажденный в конденсаторе теплоноситель (антифриз) поступает вниз и, возвращаясь наверх по внешней трубке, нагревается от боковых радиаторов.

Нагрев воды в летний период доходит до 110 °С. Нагревательная труба действует как тепловой проводник высокой проводимости. Благодаря своим теплофизическим свойствам коэффициент трансформации тепла в тысячи раз выше лучших твердых проводников тепла таких же размеров.

Всё это обеспечивает коллектору работу в течение более короткого периода солнечного освещения и небольшого объема излучения. Для увеличения теплоотдачи, особенно в холодное время года, применяется постоянная принудительная циркуляция теплоносителя (антифриз) с помощью насоса.

По сравнению с другими технологиями такая труба может обеспечить достижение желаемой температуры в более ранний период суток, при нормальных условиях горячая вода может быть обеспечена два раза в день. По внутренней трубке охлажденный теплоноситель поступает вниз и, возвращаясь наверх по внешней трубке, нагревается от боковых радиаторов.

При этом присутствует эффект «запирания» трубы, исключающий теплопотери в ночное время.

Термоизолированный бак — имеет различную емкость в зависимости от модели, максимальный объем 500 литров. Модели наиболее пользующиеся спросом — это с объемом 200 и 400 литров. Бак способен удерживать температуру до 4 суток, с потерей примерно 2-3 градуса в сутки, в случае, если нет солнца.

В качестве резервного источника тепла, он оснащается электрическим ТЭНом мощностью до 2 кВт или газовым котлом, для автоматического подогрева воды до заданной температуры.

Данная установка может функционировать как по отдельности (от энергии солнца или от эл. энергии), так и одновременно по формуле солнце + эл. энергия и способна безотказно работать при температурном режиме до минус 60 °С.

Источники: solar-kollektor.ru

Открытый контур

Активные системы с открытым контуром используют насосы для циркуляции воды через коллекторы. Активные системы с открытым контуром являются популярными в регионах с положительными температурами или при сезонном использовании. Могут эксплуатироваться при температурах воздуха до −20 °C или −25 °C.

Закрытый контур

Активные системы с закрытым контуром. В этих системах теплоносителем коллектора является обычно водно-гликолиевый антифриз. Теплообменники передают высокую температуру от теплоносителя первого контура воде, которая запасена в баках (теплоаккумуляторах).

Системы с закрытым контуром популярны в областях, подвергающихся продолжительно действующим отрицательными температурам, так как они имеют хорошую защиту от замораживания.

В связи с высокими значениями температуры при застое теплоносителя в периоды максимальной облученности, не все антифризы пригодны для использования в солнечных системах.

Панельного типа

Конструкция самая простая. Коллектор выкрашен в чёрный цвет, помещён в корпус с теплоизоляцией и герметично закрыт стеклом, пластиком, поликарбонатом и т. п. Эффективность оставляет желать лучшего. Это объясняется тем, что жидкость теряет некоторую часть тепла при прохождении коллектор.

Эти потери обычно весьма ощутимы. Панельные солнечные водонагреватели хорошо подходят для регионов, где высокая солнечная инсоляция.

Вакуумные

Теплоноситель находится в трубке, которая запаяна в вакуумной колбе. Эта колба выполнена из кварцевого стекла пропускающего солнечное тепло, а также ультрафиолет. Это очень эффективные конструкции, где потери тепла минимальны.

Если в качестве теплоносителя используется вода, то нагрев происходит до кипения. Если там будет масло, то его можно разогреть до 200─300 градусов. Практически все вакуумные водонагреватели фабричные и стоят довольно дорого.

Пластиковые

Пластиковые солнечные коллекторы изготавливаются из полиэтилена марки ПЭВП методом заводской штамповки. Эти коллекторы дешевы и практичны. Их можно напрямую подключить к системе горячего водоснабжения.

Не имеют теплоизоляционные покрытия, поэтому они не используются в холодное время года. Их невозможно установить в регионах с сильными ветрами.

Источники: stroyteplo.by, akbinfo.ru, batsol.ru

Экологичность

Положительные аспекты

Из всех доступных возобновляемых источников энергии именно солнечная энергия и солнечные батареи наносят минимальный ущерб окружающей среде. Электричество, произведенное при помощи солнечных батарей, не оказывает вредного воздействия на воздушные массы. И никак не загрязняет ни поверхностные, ни подземные воды, не истощает природные ресурсы и не несет опасности, как для животного мира, так и здоровья человека.

Единственный реально опасный эффект данного типа энергии связан с получением некоторого количества токсических веществ и химикатов, например, кадмия и мышьяка, которые используются при производстве солнечных батарей. Но, по большому счету, и эти негативные эффекты минимальны по своему объёму, если есть продуманная политика в плане их повторного использования и надлежащей утилизации.

Если смотреть широким полем зрения на проблему, то риски для окружающей среды от солнечных батарей минимальны. Приблизительные выбросы в атмосферу в ходе производства составляют 0,02 грамма теллуридла кадмия на ГИГАВАТТ\час электрической энергии, произведенной за весь срок службы солнечного модуля, и это очень низкий показатель.

Широкомасштабное использование солнечных батарей не несет никакого риска для здоровья человека и живых существ. А повторная переработка модулей, что уже отслужили свой срок службы, почти полностью нивелирует озабоченность «зеленых» по поводу вредности этого вида производства электрической энергии.

Во время своей работы солнечные модули не производят загрязнения Природы, и более того, постепенно замещая традиционные виды топлива (газ, нефть, уголь) они приносят существенные выгоды окружающей среде.

Теллурид кадмия в солнечных батареях на самом деле на поверку оказывается значительно более дружественен Природе, чем все остальные ныне используемые виды кадмийных батарей, включая знаменитые никель-кадмиевые.

Отрицательное влияние

Само производство солнечных батарей включает в себя использование некоторых токсичных газов, взрывоопасных летучих веществ, коррозийных жидкостей и подозрительных канцерогенных – вызывающих рак – реагентов.

Магнитуда возможных негативных эффектов на здоровье человека и Природу в случае производства солнечных батарей варьируется в зависимости от используемых токсических материалов, их насыщенности, интенсивности использования, а также продолжительности их воздействия на человека в условиях производства.

Утилизация значительных объемов отслуживших свое солнечных модулей на конкретной территории приводит к увеличению риска для здоровья людей в данной местности. А также это пагубно для местной флоры и фауны.

Утечка химических реагентов из утилизируемых модулей дает вероятность заражению местной почвы и поверхностных вод.

Скопление солнечных батарей на примере местечка Барстоу, Калифорния, под кодовым обозначением «Солнечная №2», занимает 52,6 гектаров (почти 130 акров) земель и производит около 10 мегаватт электричества на максимальном выходе при пиковых значениях. Производительность достигает лишь 16%.

Для таких вот установок типа «Солнечная -2», чтобы произвести такое же количество энергии, как и типичной 1000 мегаватт электростанции на обычном топливе, за год потребуется покрыть солнечными модулями 33 000 (!) гектаров земли. Или иными словами, 127 квадратных миль площади! А это уже серьезный урон окружающей среде.

Источники: altenergiya.ru

Эффективность и КПД

Солнечный коллектор не может быть эффективным на 100 % поскольку имеет потери при преобразовании тепловой энергии а так же оптические потери.

Тепловые потери – это часть солнечной энергии, которая была преобразована в солнечном коллекторе в тепловую энергию, но не была использована на нагрев теплоносителя а рассеялась в окружающем воздухе.

Данный вид потерь зависит от разницы температуры в коллекторе и окружающем воздухе и коэффициентов тепловых потерь k₁ (линейный коэффициент тепловых потерь Вт/(м²·К)) и k₂ (коэффициент тепловых потерь с учетом нелинейности Вт/(м²·К²)).

Потери состоят из трех режимов теплообмена:

  1. потери на теплопроводность;
  2. конвекционные потери;
  3. потери на излучение;

Оптические потери – это часть солнечной энергии, которая при попадании на солнечный коллектор не была преобразована в тепловую энергию. Оптическая эффективность солнечного коллектора выражается оптическим коэффициентом полезного действия η₀ (безразмерная величина).

Оптический КПД зависит от поглощательной способности абсорбера, прозрачности изоляции (стекла), и эффективности поглощающей панели (эффективность передачи тепловой энергии от абсорбера к теплоносителю), выражаются в коэффициентах a, t, Fr соответственно.

Таким образом η₀ = (a·t·Fr). Эти коэффициенты являются справочными и определяются при помощи стандартизированных испытаний на специальных стендах, и относится к единице площади солнечного коллектора. Значение η₀ еще называют КПД коллектора при нулевых тепловых потерях.

Реальный КПД солнечного коллектора

Общую эффективность солнечного коллектора определяют значением КПД коллектора:

Пояснение:

  • η- коэффициент полезного действия коллектора;
  • η₀- оптический коэффициент полезного действия;
  • k₁ -коэффициент тепловых потерь Вт/(м²·К);
  • k₂ -коэффициент тепловых потерь Вт/(м²·К²);
  • ∆Т- разница температур между коллектором и воздухом К;
  • Е – суммарная интенсивность солнечного излучения.

Максимальное значение КПД достигается при условии, что разность температуры ∆Т равна нулю. В таком случае коллектор не имеет тепловых потерь.Однако такие идеальные условия в практике не встречаются. Значение η₀ является паспортным значением любого солнечного коллектора и обязательно должен быть указан в документации к солнечному коллектору.

Принципы развития конструирования солнечных коллекторов направлены на увеличение поглощающей способности и уменьшение тепловых потерь. Наибольший оптический КПД имеет открытый коллектор (без прозрачной изоляции) но имеет и наибольшие тепловые потери.

В свою очередь наименьшие тепловые потери имеет вакуумный солнечный коллектор, но обладает небольшим оптическим КПД из-за применения двух слоев прозрачной изоляции, цилиндрической формы абсорбера и промежуточные теплопередачи.

Целесообразность применения в России

В климатических условиях средней полосы России солнечные водонагревательные установки могут эффективно использоваться различными потребителями в бытовых целях в течение 6-7 месяцев в году (март/апрель — сентябрь).

Для нагрева 100 л воды солнечная установка должна иметь 2-3 м2 солнечных коллекторов. Такая водонагревательная установка в летнее время обеспечит ежедневный нагрев воды до температуры не менее 45°С с вероятностью не менее 70-80%.

Как с энергетической, так и с экономической точек зрения для создания бытовых солнечных водонагревателей целесообразно использовать простейшие солнечные коллекторы с одним прозрачным ограждением.

Применение селективных покрытий вряд ли целесообразно по экономическим причинам.

Источники: solarsoul.net, abok.ru


0 комментариев

Добавить комментарий

Avatar placeholder

Ваш адрес email не будет опубликован.

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Закрыть
// Remove bad images